Oxford Instruments Plasma Technology Applications Group

### Films deposited by ALD in Oxford Instruments ALD reactors

This report is a summary of development and research using both the FlexAL and OpAL reactors at:

- Oxford Instruments applications lab in the UK
- Development partners at Eindhoven University of Technology, Netherlands
- Other customers who have kindly shared their process results
- Published results available in the public domain

This document is Oxford Instruments' confidential information and should not be reproduced or re-distributed. For those interested in specific materials it is best to share the separate datasheets per ALD process.



The Business of Science®

 $\ensuremath{\textcircled{\sc o}}$  Oxford Instruments Plasma Technology Ltd. All rights reserved.

### List of materials in document

| ALD Process                          | Link to page number |
|--------------------------------------|---------------------|
| Al <sub>2</sub> O <sub>3</sub>       | 3                   |
| AIN                                  | 7                   |
| AIF <sub>3</sub>                     | 9                   |
| Alucone                              | 11                  |
| BaO, BaTiO <sub>3</sub>              | 12                  |
| Co <sub>3</sub> O <sub>4</sub>       | 13                  |
| GaN                                  | 14                  |
| Gd <sub>2</sub> O <sub>3</sub> , GdN | 16                  |
| HfO <sub>2</sub>                     | 17                  |
| HfN                                  | 21                  |
| In <sub>2</sub> O <sub>3</sub>       | 22                  |
| Li <sub>2</sub> CO <sub>3</sub>      | 24                  |
| MoO <sub>3</sub>                     | 25                  |
| MoS <sub>2</sub>                     | 26                  |
| NbN                                  | 27                  |
| Pt                                   | 28                  |
| Ru, RuO <sub>2</sub>                 | 30                  |
| SiO <sub>2</sub>                     | 31                  |
| Si <sub>3</sub> N <sub>4</sub>       | 34                  |
| SnO <sub>2</sub>                     | 36                  |
| SrTiO <sub>3</sub>                   | 37                  |
| Ta <sub>2</sub> O <sub>5</sub>       | 38                  |
| TaN                                  | 39                  |
| TiO <sub>2</sub>                     | 41                  |
| TIN                                  | 43                  |
| WO <sub>3</sub>                      | 46                  |
| WN <sub>x</sub>                      | 48                  |
| ZnO, ZnO:Al, ZnO:B                   | 49                  |
| ZrO <sub>2</sub>                     | 50                  |



© Oxford Instruments Plasma Technology Ltd. All rights reserved.

Oxford Instruments Plasma Technology Applications Group

## Al

## $Al_2O_3$

| Precursor - properties | TMA - Al(CH <sub>3</sub> ) <sub>3</sub> - liquid                                     | TMA - Al(CH <sub>3</sub> ) <sub>3</sub> - liquid vapour draw @ 30°C      |  |  |
|------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|
| Non-metal precursors   | $H_2O$ thermal, $O_3$ therm                                                          | al, O <sub>2</sub> plasma                                                |  |  |
| Temperature range      | 30°C - 400°C (50°C - 40                                                              | 30°C - 400°C (50°C - 400°C for OpAL)                                     |  |  |
| Growth rate per cycle  | 1Å/cycle @ 300°C                                                                     |                                                                          |  |  |
| Deposition rate        | 1.5nm/min @ 300°C                                                                    |                                                                          |  |  |
| Refractive Index       | O <sub>2</sub> plasma<br>1.59 (30°C)<br>1.62 (120°C)<br>1.64 (200°C)<br>1.64 (300°C) | H <sub>2</sub> O thermal<br>1.60 (120°C)<br>1.62 (200°C)<br>1.64 (300°C) |  |  |
| Breakdown Voltage      | >7.0 MV/cm @200 °C                                                                   | >4.0 MV/cm @200 °C                                                       |  |  |
| Dielectric Constant    | >7.0 @ 200 °C                                                                        | >5.5 @ 200 °C                                                            |  |  |
| Uniformity             | ± 1% over 100mm, ± 1.5% over 150mm, ± 2.0% over 200mm                                |                                                                          |  |  |
| Precursor consumption  | 100nm/g                                                                              |                                                                          |  |  |

### 200mm data for FlexAL only



TMA saturation (O<sub>2</sub> process) @ 200°C



Water saturation at 100°C and 200°C



Growth rate per cycle from the graphs is 1.2Å/cycle for plasma and 1.0Å/cycle for thermal at 200°C. Uniformity: <  $\pm 2.0$ % (200mm wafer).



The Business of Science®

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

### **Deposition onto trenches:**



SEM image of a 80 nm remote plasma ALD  $Al_2O_3$  film in 2.5 mm wide trenches with aspect ratio ~10 deposited in the FlexAL reactor, courtesy of Eindhoven University of Technology & NXP.

#### Film analysis:



| Parameter              | Before anneal   | After anneal<br>(forming gas<br>anneal 425°C,<br>30 minutes) |
|------------------------|-----------------|--------------------------------------------------------------|
| Dielectric<br>constant | 7.8             | 8.9                                                          |
| Breakdown<br>voltage   | 9.7 ± 0.5 MV/cm | 8.4 ± 0.5 MV/cm                                              |

EOT vs physical thickness of Al<sub>2</sub>O<sub>3</sub> films deposited at 200°C by remote plasma ALD. Results for both the as-deposited and the annealed (425°C, forming gas) material are shown.

| ( | RBS and ERD                    | analysis for 2 | 200 °C film |  |
|---|--------------------------------|----------------|-------------|--|
|   | Al <sub>2</sub> O <sub>x</sub> | at % C         | at % H      |  |
|   | x=3.05                         | < 2%           | 2.5%        |  |

*Compositional data by Rutherford Backscattering Spectroscopy (RBS) and Elastic Recoil Detection (ERD)* 



© Oxford Instruments Plasma Technology Ltd. All rights reserved.

#### **Reported in papers using Oxford Instruments tools**

Room temperature ALD using TMA and  $O_2$  plasma and ozone in FlexAL at Eindhoven University of Technology.

Potts et al., Chem. Vap. Deposition, **19**, 125 (2013) http://dx.doi.org/10.1002/cvde.201207033





RT-ALD films with 10 s plasma equivalent to films grown at 100 °C using standard process (2 s plasma).

Keuning et al., *J. Vac. Sci. Technol. A* **30**, 01A131 (2012) http://dx.doi.org/10.1116/1.3664762

- Remote plasma ALD: Al<sub>2</sub>O<sub>3</sub> barrier deposition at room temperature
- Excellent single layer barrier (20-40 nm  $Al_2O_3$ )  $\rightarrow$  WVTR =  $\leq 2 \cdot 10^{-6} \text{ g} \cdot \text{m}^{-2} \cdot \text{day}^{-1}$
- Development towards flexible electronics such as OLEDs



excellent moisture barrier properties of room temperature Al<sub>2</sub>O<sub>3</sub>



© Oxford Instruments Plasma Technology Ltd. All rights reserved.

#### **Other relevant papers:**

Jinesh et al., J. Electrochem. Soc. **158**, G21 (2011) http://dx.doi.org/10.1149/1.3517430

Dingemans et al., *Phys. Status Solidi RRL* 5, 22 (2011) http://dx.doi.org/10.1002/pssr.201004378

Hoex et al., *Phys. Status Solidi RRL* **6**, 4 (2012) <u>http://dx.doi.org/10.1002/pssr.201105445</u>

Potts et al., *J. Electrochem. Soc.* **157**, P66 (2010) http://dx.doi.org/10.1149/1.3428705

Potts et al., J. Electrochem. Soc. **158**, C132 (2011) http://dx.doi.org/10.1149/1.3560197

Sagade et al., *Nanoscale* **7**, 3558 (2015) http://dx.doi.org/10.1039/c4nr07457b

Cho et al., *Microelectronic Engineering* **147**, 277 (2015) <u>http://dx.doi.org/10.1016/j.mee.2015.04.067</u>

Koushik et al., *Energy Environ. Sci.*, (2017), Advance Article <u>http://dx.doi.org/10.1039/c6ee02687g</u>



© Oxford Instruments Plasma Technology Ltd. All rights reserved.

Oxford Instruments Plasma Technology Applications Group

| Λ        |  |
|----------|--|
| <b>A</b> |  |

### AIN

| Precursor - properties | TMA - Al(CH <sub>3</sub> ) <sub>3</sub> - liquid vapour draw @ 30°C                         |
|------------------------|---------------------------------------------------------------------------------------------|
| Non-metal precursors   | $N_2$ or $N_2/H_2$ plasma                                                                   |
| Temperature range      | 300°C – 550 °C                                                                              |
| Growth rate per cycle  | 0.6Å/cycle @ 300°C                                                                          |
| Deposition rate        | 0.36nm/min @ 300°C                                                                          |
| Refractive Index       | 1.90 – 1.95                                                                                 |
| Uniformity             | $\pm$ 1.5% over 100, $\pm$ 2.5% over 150mm, $\pm$ 3.5% over 200mm (when using $N_2$ plasma) |
| Precursor consumption  | 75nm/g                                                                                      |

### 200mm data for FlexAL only

### Saturation curves:

This process is well known in the literature to be a non-ideal ALD process in that it does not properly self limit. Better saturation and uniformity is obtained when using a pure  $N_2$  plasma, however, the best stability of the films has been observed using  $N_2/H_2$  plasmas.

### **Analysis:**



*Refractive index of AIN using N<sub>2</sub>/H<sub>2</sub> plasma; data courtesy of Cornell Nanofabrication Facility (CNF)* 



AES analysis of AIN using N/H, plasma showing near stoichiometric AIN.



The Business of Science®

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

#### **Reported in papers using Oxford Instruments tools**

ALD of AlN for thin membranes using TMA and  $\rm H_2/N_2$  plasma in OpAL at Leibniz Institute of Photonic Technology (IPHT) in Jena.

Goerke et al., *Applied Surface Science* **338**, 35 (2015) http://dx.doi.org/10.1016/j.apsusc.2015.02.119

LEIBNIZ-INSTITUT für PHOTONISCHE TECHNOLOGIEN Ipht Jena



*Cross-sectional SEM-image of a 60 nm thick and conform ALD AIN film on a Si/NiCr structure with etched undercut.* 

Epitaxial growth of ALD AlN using TMA and  $H_2/N_2$  plasma at 300 °C on OpAL at Hong Kong University of Science and Technology. Followed by ALD  $Al_2O_3$  gate dielectric.

Liu et al., *IEEE Electron Device Lett.* **34**, 1106 (2013) <u>http://dx.doi.org/10.1109/LED.2013.2271973</u> Liu et al., *Phys. Status Solidi C* **11**, 953 (2014) <u>http://dx.doi.org/10.1002/pssc.201300442</u>





Thin-film transistor design

TFTs with good gate control with low subthreshold swing (~85 mV/decade) and low-field mobility (~27  $cm^2/(V \cdot s)$ ).



Epitaxial 4 nm AlN on GaN



close to AIN composition



The Business of Science®

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

Oxford Instruments Plasma Technology Applications Group

### AIF<sub>3</sub>

### **Based on customer results**

| Precursor - properties | TMA - Al(CH <sub>3</sub> ) <sub>3</sub> - liquid vapour draw @ 30°C |
|------------------------|---------------------------------------------------------------------|
| Non-metal precursors   | SF <sub>6</sub> plasma                                              |
| Temperature range      | 50°C – 300 °C                                                       |
| Growth rate per cycle  | 0.85 Å/cycle @ 200°C                                                |
| Deposition rate        | 0.25nm/min @ 200°C                                                  |
| Refractive Index       | 1.35                                                                |
| Uniformity             | ± 3.9% over 200mm (standard deviation, 1 sigma)                     |

Note that  $SF_6$  plasma can etch  $SiO_2$  and Si surfaces. To avoid etching of the substrate, 20  $Al_2O_3$  ALD cycles using TMA and  $O_2$  plasma can be performed prior to deposition of the AlF<sub>3</sub> which serve as a protective barrier.

### **Reported in papers using Oxford Instruments tools**

ALD using TMA and  $SF_6$  plasma in FlexAL at Eindhoven University of Technology.

Vos et al., APL 111, 113105 (2017) http://dx.doi.org/10.1063/1.4998577



*Growth per cycle (GPC) as a function of precursor dosing time showing fast saturation even at low temperature.* 



TU/e

Technische Universiteit **Eindhoven** University of Technology

*Growth per cycle (GPC) as a function of plasma exposure time showing saturation at both temperatures.* 



© Oxford Instruments Plasma Technology Ltd. All rights reserved.

TABLE I. Properties of AlF<sub>3</sub> films for deposition temperatures between 50 °C and 300 °C. The growth per cycle (GPC) in terms of Al atoms nm<sup>-2</sup> cycle<sup>-1</sup> and the chemical composition were determined from RBS and ERD, the refractive index from VUV-SE, and the mass density by combining the RBS and SE results. Typical errors are indicated in the top row, unless the error varies with temperature.

| Deposition<br>temperature (°C) | GPC (Å)       | GPC (Al at. $nm^{-2}$ ) | F/Al          | [S] (at. %)   | [H] (at. %)   | Mass density (g·cm <sup>-3</sup> ) | Refractive index |
|--------------------------------|---------------|-------------------------|---------------|---------------|---------------|------------------------------------|------------------|
| 50                             | $1.50\pm0.05$ | $3.3 \pm 0.3$           | $3.1 \pm 0.5$ | $0.5 \pm 0.1$ | $3.2 \pm 0.8$ | $2.8 \pm 0.3$                      | $1.35 \pm 0.01$  |
| 100                            | 1.13          | $2.3 \pm 0.2$           | 3.1           | 0.3           | $2.3 \pm 0.5$ | 2.7                                | 1.34             |
| 200                            | 0.85          | $1.9 \pm 0.2$           | 2.9           | 0.2           | $1.7 \pm 0.3$ | 2.9                                | 1.35             |
| 300                            | 0.55          | $1.2 \pm 0.1$           | 2.9           | 0.0           | $1.3\pm0.2$   | 2.7                                | 1.35             |



XPS depth profile of AIF, on Si wafer with AI<sub>2</sub>O<sub>3</sub> interlayer. Low impurity levels and F/AI ratio very close to 3.



Wide temperature window. Growth per cycle (GPC) as a function of temperature in terms of thickness (left axis) and deposited Al atoms per nm<sup>2</sup> (right axis). Inset: No growth delay, thickness as a function of ALD cycles.



TEM images of (a) the top and (b) the middle of a GaP nanowire, illustrating the conformality of the ALD process.



Refractive index and extinction coefficient for a film deposited at 200 °C. Inset: Extinction coefficient as a function of photon energy for deposition temperatures between 50 °C and 300 °C showing low absorption over a wide range.



The Business of Science®

© Oxford Instruments Plasma Technology Ltd. All rights reserved.



Customer results show that alucone can be grown by ALD. Since a part of the resulting film is organic, this technique is often called molecular layer deposition (MLD). Other MLD processes are also expected to be able to run on Oxford Instruments tools.

### **Reported in papers using Oxford Instruments tools**

Molecular layer deposition (MLD) using TMA and ethylene glycol on OpAL at 150 °C.

Ghazaryan, Kley, Tünnermann, and Szeghalmi, *J. Vac. Sci. Technol. A* 31, 01A149 (2013) <u>http://dx.doi.org/10.1116/1.4773296</u>





Mixed with ALD Al<sub>2</sub>O<sub>3</sub> to make alloys.



Alucone MLD cycle



*Slow heating up to 400 °C of 5:1 alucone/Al*<sub>2</sub>O<sub>3</sub> *alloy provides novel, nanoporous, low index material.* 



The Business of Science®

 $\ensuremath{\textcircled{\sc o}}$  Oxford Instruments Plasma Technology Ltd. All rights reserved.

Oxford Instruments Plasma Technology Applications Group

## BaO and BaTiO<sub>3</sub>

Customer results show that both BaO and BaTiO<sub>3</sub> can be grown by plasma ALD.

### **Reported in papers using Oxford Instruments tools**

Perovskite  $BaTiO_3$  interesting due to high k value.  $BaTiO_3$  and BaO deposited using FlexAL.  $Ba(Pr_3Cp)_2$  heated to 180 °C as precursor and  $O_2$  plasma as reactant.

Schindler et al., *Scripta Materialia* **111**, 106 (2016) http://dx.doi.org/10.1016/j.scriptamat.2015.08.026





Zoomed in TEM view showing crystalline lattice fringes.



Saturation of Ba precursor pulse.

© Oxford Instruments Plasma Technology Ltd. All rights reserved.



Low EOT values for 12 nm-thick films deposited at 250 °C.



The Business of Science®

Oxford Instruments Plasma Technology Applications Group

Co

## **Co**<sub>3</sub>**O**<sub>4</sub>

### **Based on customer results**

| Precursor - properties | Cobaltocene - CoCp <sub>2</sub> – solid carrier gas assisted @ 80°C |
|------------------------|---------------------------------------------------------------------|
| Non-metal precursors   | O <sub>2</sub> plasma                                               |
| Temperature range      | 100°C – 400 °C                                                      |
| Growth rate per cycle  | ~0.5Å/cycle @ 300°C                                                 |
| Uniformity             | ± 2.0% over 100, ± 3.0% over 150mm, ± 3.5% over 200mm               |

### 200mm data for FlexAL only

This material is untested on substrates greater than 2". We will support the improvement in uniformity remotely and expect that levels similar as those indicated can be obtained.

### **Reported in papers using Oxford Instruments tools**

Plasma ALD using  $CoCp_2$  and  $O_2$  plasma in FlexAL at Lawrence Berkeley National Laboratory (LBNL)

Yang et al., *Nature Materials* (2016) Advance online <u>http://dx.doi.org/10.1038/nmat4794</u>

Yang et al., J. Am. Chem. Soc. **136**, 6191 (2014) http://dx.doi.org/10.1021/ja501513t

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY



Stable photocurrent over time at 1.1 V with  $Co_3O_4$ ALD on nanostructured surface



 $Co_3O_4$  to serve as catalyst and protection layer of nanotextured Si photoanode



 $\ensuremath{\textcircled{\sc o}}$  Oxford Instruments Plasma Technology Ltd. All rights reserved.

| Ga | G | a |
|----|---|---|
|----|---|---|

### GaN

| Precursor - properties | TEGa – Ga(CH <sub>2</sub> CH <sub>3</sub> ) <sub>3</sub> - liquid vapour draw @ 30°C |
|------------------------|--------------------------------------------------------------------------------------|
| Non-metal precursors   | N <sub>2</sub> /H <sub>2</sub> plasma                                                |
| Temperature range      | 150°C - 350°C                                                                        |
| Growth rate per cycle  | 0.40Å/cycle @ 300°C                                                                  |
| Deposition rate        | 0.12nm/min @ 300°C                                                                   |
| Refractive Index       | 1.90 @ 350°C                                                                         |
| Uniformity             | ± 1.5% over 100, ± 2.5% over 150mm, ± 3.5% over 200mm                                |
| Precursor consumption  | 15.5nm/g                                                                             |

### **Saturation curves:**

#### 200mm data for FlexAL only

Previous literature has demonstrated that the process with  $NH_3$  is not self-saturating. An ideal ALD process has been demonstrated using a mixed  $N_2/H_2$  plasma. Apparent within this is the influence of additional plasma exposure on film quality, with exposures greater than the saturating 10 seconds leading to an assumed densification of the film accompanied with a higher refractive index from both this affect and a reduction in chemical impurities



Growth rate vs TEGa dose time



Growth rate vs plasma exposure time



© Oxford Instruments Plasma Technology Ltd. All rights reserved.

### Temperature window and pressure dependence:

ALD window existing between 150 and 350 °C. Temperatures greater than 350 °C have not been tested but the lower bound agrees with previous literature which has stated the same bounds. Verified independently by AES it is observed that there is a defined shift in impurity levels when dropping to low pressures. Refractive Index is often directly comparable to levels of impurity.



growth rate vs temperature



growth rate vs plasma pressure

### Film Analysis:

Auger Electron Spectroscopy (AES) analysis of 65nm of ALD GaN film (deposited at 350 °C with low plasma pressure) <3 at% of both C and O are observed in the bulk and the film is shown to be stoichiometric. XRD analysis of this film shows a very small peak attributable to the GaN[0002] phase.



![](_page_14_Picture_11.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

## Gd

### Gd<sub>2</sub>O<sub>3</sub> and GdN

Customer results show that both  $Gd_2O_3$  and GdN can be grown by plasma ALD. Generally the precursors need quite high temperatures (190 °C for  $Gd(PrCp)_3$ ) and the maximum temperature is also limited by precursor decomposition (max. 250 °C for  $Gd(PrCp)_3$  and some decomposition already occurring at 200 °C for  $Gd(PrCp)_3$ ).

### **Reported in papers using Oxford Instruments tools**

Plasma ALD of Gd<sub>2</sub>O<sub>3</sub> using Gd('PrCp)<sub>3</sub> and O<sub>2</sub> plasma in OpAL at Massachusetts Institute of Technology Vitale et al., *J. Vac. Sci. Technol. A* **30**, 01A130 (2012) <u>http://dx.doi.org/10.1116/1.3664756</u>

![](_page_15_Picture_7.jpeg)

![](_page_15_Figure_8.jpeg)

Growth rate of  $Gd_2O_3$  PE-ALD films at 250 and 300 °C as a function of precursor dose.

Plasma ALD of GdN using  $Gd(MeCp)_3$  and  $N_2$  plasma in OpAL at University of Liverpool

Fang et al., *J. Crystal Growth* **338**, 111 (2012) http://dx.doi.org/10.1016/j.jcrysgro.2011.10.049

![](_page_15_Picture_12.jpeg)

![](_page_15_Figure_13.jpeg)

AES depth profiling of gadolinium nitride film deposited with N<sub>2</sub> plasma (5s) at 200 °C.

![](_page_15_Picture_15.jpeg)

The Business of Science®

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

Hf

## HfO<sub>2</sub>

### TDMAH precursor – vapour drawn (recommended process)

| Precursor - properties | TDMAH – Hf(N(CH <sub>3</sub> ) <sub>2</sub> ) <sub>4</sub> – liquid vapour draw @ 70°C |
|------------------------|----------------------------------------------------------------------------------------|
| Non-metal precursors   | $H_2O$ thermal, $O_2$ plasma                                                           |
| Temperature range      | 80°C - 300°C                                                                           |
| Growth rate per cycle  | 1.1 Å/cycle @ 275°C (plasma), 0.7 Å/cycle @ 300°C (thermal)                            |
| Deposition rate        | 0.3-0.4 nm/min @ 290°C                                                                 |
| Refractive Index       | 1.98 – 2.06                                                                            |
| Breakdown Voltage      | > 3.0 MV/cm @ 290 °C                                                                   |
| Uniformity             | ± 1.5% over 100, ± 2.0% over 150mm, ± 3-4% over 200mm                                  |

200mm data for FlexAL only ALD temperature window for HfO<sub>2</sub> using TDMAH

![](_page_16_Figure_7.jpeg)

Wide temperature window both for plasma and thermal ALD of HfO2, higher growth per cycle for plasma process

Good repeatability plasma process for both thickness and refractive index (other HfO, processes can sometimes be less reproducible)

![](_page_16_Picture_10.jpeg)

The Business of Science®

![](_page_16_Figure_13.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

![](_page_17_Figure_2.jpeg)

Also good repeatability for thermal process for both thickness and refractive index (other HfO<sub>2</sub> processes can sometimes be less reproducible)

### TEMAH precursor – bubbled or carrier gas assisted

| Precursor - properties | TEMAH - Hf(N(C <sub>2</sub> H <sub>5</sub> )(CH <sub>3</sub> )) <sub>4</sub> - liquid bubbled @ 70°C |
|------------------------|------------------------------------------------------------------------------------------------------|
| Non-metal precursors   | $H_2O$ thermal, $O_3$ thermal, $O_2$ plasma                                                          |
| Temperature range      | 80°C - 290°C                                                                                         |
| Growth rate per cycle  | 1.1 Å/cycle @ 290°C (plasma), 0.8 Å/cycle @ 290°C (thermal)                                          |
| Refractive Index       | 1.95 – 2.05                                                                                          |
| Breakdown Voltage      | > 3.0 MV/cm @ 290 °C                                                                                 |
| Dielectric Constant    | > 17 @ 290 °C (plasma), > 15 @ 290 °C (thermal)                                                      |
| Uniformity             | ± 1.5% over 100, ± 2.5% over 150mm, ± 3.5% over 200mm                                                |
| Precursor consumption  | 70nm/g                                                                                               |

### 200mm data for FlexAL only

### **Saturation curves:**

![](_page_17_Figure_8.jpeg)

![](_page_17_Picture_9.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

Oxford Instruments Plasma Technology Applications Group

![](_page_18_Figure_2.jpeg)

AES analysis of 25nm of remote plasma ALD HfO<sub>2</sub> deposited at 290 °C, showing a carbon contamination of less than 2%.

![](_page_18_Figure_4.jpeg)

Equivalent oxide thickness (ÉOT) of HfO, films derived from C-V measurements vs physical thickness measured by spectroscopic ellipsometry, the calculated dielectric constant is ~17.

### **Reported in papers using Oxford Instruments tools**

Thermal ALD using TEMAH and  $\rm H_2O$  in FlexAL at UC Santa Barbara.

Chobpattana et al., *J. Appl. Phys* **116**, 124104 (2014) <u>http://dx.doi.org/10.1063/1.4896494</u> Elias et al., *Jpn. J. Appl. Phys.* **53**, 065503 (2014) <u>http://dx.doi.org/10.7567/JJAP.53.065503</u>

![](_page_18_Picture_9.jpeg)

![](_page_18_Picture_10.jpeg)

ALD HfO<sub>2</sub> part of high-quality gate stack on InGaAs

![](_page_18_Figure_12.jpeg)

FinFET with HfO<sub>2</sub> gate dielectric and TiN gate metal done on FlexAL at UCSB

![](_page_18_Picture_14.jpeg)

The Business of Science®

Plasma ALD using HfCp(NMe<sub>2</sub>)<sub>3</sub> (HyALD<sup>TM</sup>) and O<sub>2</sub> plasma in FlexAL at Eindhoven University of Technology.

Sharma et al., *JVST A* **35**, 01B130 (2017) http://dx.doi.org/10.1116/1.4972210

TU/e Technische Universiteit Eindhoven University of Technology

 $HfO_2$  ALD over a temperature range of 150–400 °C at a growth per cycle around 1.1 A/cycle. Increasing the deposition temperature from 200 to 400 °C, reduced the atomic concentrations of residual carbon and hydrogen from 1.0 to <0.5 at.% and 3.4 to 0.8 at.%, respectively.

![](_page_18_Picture_20.jpeg)

![](_page_19_Picture_2.jpeg)

*Trench structures with varying aspect ratios showing conformal HfO*, *thin film* 

![](_page_19_Picture_4.jpeg)

Cross-sectional TEM image showing the individual crystalline grains of HfO,

### **Other relevant papers:**

Heil et al., *J. Vac. Sci. Technol. A* **25**, 1357 (2007) http://dx.doi.org/10.1116/1.2753846

El-Atab et al., *Nanoscale Research Letters* **10**, 248 (2015) <u>http://dx.doi.org/10.1186/s11671-015-0957-5</u>

English et al., *J. Vac. Sci. Technol. B* **32**, 03D106 (2014) <u>http://dx.doi.org/10.1116/1.4831875</u>

Chobpattana et al., *J. Appl. Phys.* **114**, 154108 (2013) http://dx.doi.org/10.1063/1.4825259

Richter et al., *J. Vac. Sci. Technol. A* **32**, 01A117 (2014) <u>http://dx.doi.org/10.1116/1.4842675</u>

Mather et al., *Microelectronic Engineering* **109**, 126 (2013) <u>http://dx.doi.org/10.1016/j.mee.2013.03.032</u>

Colón and Shi, Solid-State Electronics **99**, 25 (2014) http://dx.doi.org/10.1016/j.sse.2014.05.005

Simon et al., *Sol. Energy Mat. & Sol. Cells* **131**, 72 (2014) http://dx.doi.org/10.1016/j.solmat.2014.06.005

![](_page_19_Picture_15.jpeg)

The Business of Science®

 $\ensuremath{\textcircled{\sc o}}$  Oxford Instruments Plasma Technology Ltd. All rights reserved.

Oxford Instruments Plasma Technology Applications Group

Hf

### HfN

| Precursor - properties | TEMAH - Hf(N( $C_2H_5$ )(CH <sub>3</sub> )) <sub>4</sub> - liquid bubbled @ 70°C |
|------------------------|----------------------------------------------------------------------------------|
| Non-metal precursors   | $NH_3$ thermal, $N_2/H_2$ plasma                                                 |
| Temperature range      | 290°C                                                                            |
| Growth rate per cycle  | 0.9 Å/cycle @ 290°C                                                              |
| Deposition rate        | 0.45nm/min @ 290°C                                                               |
| Uniformity             | ± 2.0% over 100, ± 3.0% over 150mm                                               |
| Precursor consumption  | 75nm/g                                                                           |

![](_page_20_Figure_5.jpeg)

AES showing composition of HfN by plasma ALD.

### **Reported in papers using Oxford Instruments tools**

Plasma ALD using HfCp(NMe<sub>2</sub>)<sub>3</sub> (HyALD<sup>TM</sup>) and N<sub>2</sub> (insulating HfN<sub>x</sub>) or H<sub>2</sub> plasma (conductive HfN<sub>x</sub>) in FlexAL at Eindhoven University of Technology.

Karwal et al., *JVST A* **35**, 01B129 (2017) http://dx.doi.org/10.1116/1.4972208

TU/e Technische Universiteit Eindhoven University of Technology

![](_page_20_Picture_11.jpeg)

The Business of Science®

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

---

In

## In<sub>2</sub>O<sub>3</sub>

### **Based on customer results**

| Precursor - properties | InCp – solid carrier gas assisted @ 40°C                               |
|------------------------|------------------------------------------------------------------------|
| Non-metal precursors   | Both $H_2O$ and $O_2$ gas                                              |
| Temperature range      | 100°C <sup>1</sup>                                                     |
| Growth rate per cycle  | ~1.2 Å/cycle @ 100°C                                                   |
| Uniformity             | Expected values: ± 2.0% over 100, ± 3.0% over 150mm, ± 3.5% over 200mm |

#### Notes

<sup>1</sup> The films are amorphous in the as-deposited state. The highest mobility is obtained after crystallization at 150-200 °C

### **Reported in papers using Oxford Instruments tools**

Thermal ALD using InCp and a mixture of  $H_2O$  and  $O_2$  gas in OpAL at Eindhoven University of Technology (TU/e). Although the ALD process can actually be performed at higher temperatures, the best results are obtained by growing at 100 °C and subsequently annealing at a modest temperature (150-200 °C).

Macco et al., *Phys. Status Solidi RRL* **8**, 987 (2014) <u>http://dx.doi.org/10.1002/pssr.201409426</u> Macco et al., *ACS Appl. Mater. Interfaces* **7**, 16723 (2015) <u>http://dx.doi.org/10.1021/acsami.5b04420</u>

![](_page_21_Picture_11.jpeg)

Crystallisation leads to large grains, but because of minimal volume change still smooth films.

![](_page_21_Picture_13.jpeg)

![](_page_21_Picture_14.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

Oxford Instruments Plasma Technology Applications Group

![](_page_22_Figure_2.jpeg)

A short anneal provides highly crystalline films

![](_page_22_Figure_4.jpeg)

With crystallization a strong increase in mobility occurs leading to lower resistivity values (down to 0.27 mOhm cm)

![](_page_22_Picture_6.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

Li

## Li<sub>2</sub>CO<sub>3</sub>

### **Based on customer results**

| Precursor - properties | LiO <sup>t</sup> Bu – solid carrier gas assisted @ 140°C |  |  |  |
|------------------------|----------------------------------------------------------|--|--|--|
| Non-metal precursors   | $H_2O/CO_2$ thermal, $O_2$ plasma                        |  |  |  |
| Temperature range      | 50 °C - 300 °C                                           |  |  |  |
| Growth rate per cycle  | 0.60 Å/cycle (thermal), 0.82 Å/cycle (plasma) @ 150 °C   |  |  |  |

### **Reported in papers using Oxford Instruments tools**

Thermal and plasma ALD using LiO<sup>t</sup>Bu and a mixture of  $H_2O$  and  $CO_2$  gas for thermal ALD and pure  $O_2$  plasma for plasma ALD in FlexAL at Eindhoven University of Technology (TU/e).

![](_page_23_Figure_8.jpeg)

![](_page_23_Figure_9.jpeg)

Wide temperature window for both thermal and plasma ALD

![](_page_23_Figure_11.jpeg)

ALD behaviour for both precursor and plasma dose

Table 2 Properties of  $\sim$ 50 nm films fabricated using the standard thermal ALD process at 150 °C and plasma ALD process at 150, 250 and 300 °C. The growth per cycle in terms of atoms per nm<sup>2</sup> and the atomic percentages where determined by EBS and ERD. The mass density was obtained by combining EBS and SE results. In the first row the typical error is given for a certain parameter

| Sample         | GPC (at. per nm <sup>2</sup> ) | [Li] (at%)     | [C] (at%)      | [O] (at%)      | [H] (at%)     | Mass density (g cm <sup>-3</sup> ) |
|----------------|--------------------------------|----------------|----------------|----------------|---------------|------------------------------------|
| Thermal 150 °C | $2.09 \pm 0.1$                 | $33.4 \pm 1.7$ | $14.6 \pm 0.8$ | $50.7 \pm 2.0$ | $1.3 \pm 0.2$ | $1.95 \pm 0.20$                    |
| Plasma 150 °C  | 3.08                           | 32.7           | 15.1           | 49.6           | 2.6           | 2.06                               |
| Plasma 250 °C  | 2.76                           | 30.5           | 15.8           | 50.9           | 2.8           | 1.97                               |
| Plasma 300 °C  | 6.83                           | 30.9           | 13.3           | 44.7           | 11.1          | n.a.                               |

Li<sub>2</sub>CO<sub>3</sub> composition at most temperatures, for plasma ALD at 300 °C material goes towards Li<sub>2</sub>O/LiOH

![](_page_23_Picture_16.jpeg)

The Business of Science®

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

Oxford Instruments Plasma Technology Applications Group

### Мо

### MoO<sub>3</sub>

| Precursor - properties | ( <sup>t</sup> BuN) <sub>2</sub> Mo(NMe <sub>2</sub> ) <sub>2</sub> – liquid bubbled @ 80°C |
|------------------------|---------------------------------------------------------------------------------------------|
| Non-metal precursors   | O <sub>2</sub> plasma                                                                       |
| Temperature range      | 50 °C - 350 °C                                                                              |
| Growth rate per cycle  | 0.85 Å/cycle @ 200 °C                                                                       |
| Deposition rate        | 0.46 nm/min @ 200°C                                                                         |
| Refractive index       | >2.03 for >17 nm film measured at 632.8 nm wavelength                                       |
| Uniformity             | ± 1.5% over 100, ± 2.0% over 150mm, ± 3.0% over 200mm                                       |
| RMS Roughness          | 187 pm for 46 nm film                                                                       |

![](_page_24_Figure_5.jpeg)

ALD behaviour and good uniformity in saturation

![](_page_24_Figure_7.jpeg)

O2 plasma dose saturation curve at 200°C

![](_page_24_Figure_9.jpeg)

![](_page_24_Figure_10.jpeg)

Wide temperature window, possible CVD at high T, although could be crystallization

### **Reported in papers using Oxford Instruments tools**

Ziegler et al., *Appl. Phys. A* **120**, 811 (2015) http://dx.doi.org/10.1007/s00339-015-9280-3

![](_page_24_Picture_14.jpeg)

The Business of Science®

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

Oxford Instruments Plasma Technology Applications Group

### Мо

### MoS<sub>2</sub>

### **Based on customer results**

| Precursor - properties | ( <sup>t</sup> BuN) <sub>2</sub> Mo(NMe <sub>2</sub> ) <sub>2</sub> – liquid bubbled @ 50°C                 |  |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Non-metal precursors   | $H_2S + H_2 + Ar$ plasma mixture                                                                            |  |  |  |  |
| Temperature range      | 150 °C - 450 °C                                                                                             |  |  |  |  |
| Growth rate per cycle  | 1.0 Å/cycle @ 250 °C                                                                                        |  |  |  |  |
| Crystallinity          | 2D MoS₂ material >300 °C, grain size (few to 10s of nm range) and plane orientation depending on conditions |  |  |  |  |
| Composition            | Negligible oxygen and carbon (<2% by XPS)                                                                   |  |  |  |  |
| Monolayer signature    | Confirmed by Raman and photoluminescence for 10 cycles ALD                                                  |  |  |  |  |

Oxford Instruments' ALD and 2D technical specialists have teamed up with Eindhoven University of Technology research teams to develop the innovative FlexAL-2D for atomic layer deposition (ALD) of 2D transition metal dichalcogenides for nanodevice applications.

The FlexAL-2D ALD system offers a number of benefits for growth of 2D materials:

- 2D materials growth:
  - At CMOS compatible temperatures
  - With precise digital thickness control
  - Over a large area (200mm wafers)
- Growth of ALD dielectrics & other ALD layers on 2D materials in one tool
- H<sub>2</sub>S plasma and H<sub>2</sub>S gas dosing for ALD and sulfurization and surface treatments
- Load-lock and turbo-pump for clean growth and working conditions
- High temperature table (RT-600 °C)
- Plasma cleaning and conditioning of chamber
- RF substrate biasing option for further process flexibility
- In situ process monitoring option using spectroscopic ellipsometry and mass spectrometry

 $2D \text{ MoS}_2$  films with tuneable morphologies can be synthesized i.e. in-plane and vertically standing nano-scale architectures. The 2D in-plane morphology has potential applications in nanoelectronics, while the 3D fin structures are ideal for catalysis applications such as water splitting.

### **Reported in papers using Oxford Instruments tools**

Supporting data is submitted for publication.

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

![](_page_25_Figure_23.jpeg)

![](_page_25_Figure_24.jpeg)

Increasing Raman peak separation (Δ) as a function of number of layers. At 10 cycles monolayer signature

![](_page_25_Picture_26.jpeg)

### Nb

### NbN

### **Based on customer results**

| Precursor - properties | TBTDEN or TBTMEN                               |
|------------------------|------------------------------------------------|
| Non-metal precursors   | H <sub>2</sub> plasma                          |
| Temperature range      | 250°C                                          |
| Growth rate per cycle  | 0.6 Å/cycle @ 250°C                            |
| Deposition rate        | 0.1nm/min @ 250°C (for low resistivity values) |
| Resistivity            | ~ 900μΩcm @ 250 °C (low pressure)              |

### **Reported in papers using Oxford Instruments tools**

ALD of NbN using TBTMEN precursor and  $H_2$  plasma at 250 °C in FlexAL at Fraunhofer Institute for Integrated Systems and Device Technology (IISB). Stoichiometric carbon-free NbN was obtained.

Hinz et al., *Semicond. Sci. Technol.* **25**, 075009 (2010) <u>http://dx.doi.org/10.1088/0268-1242/25/7/075009</u>

![](_page_26_Figure_9.jpeg)

Influence of plasma pressure on resistivity. The minimum resistivity value of 905  $\mu\Omega$ cm was achieved at a pressure of 8.5mTorr.

### **Other relevant papers:**

Ziegler et al., *Supercond. Sci. Technol.* **26**, 025008 (2013) http://dx.doi.org/10.1088/0953-2048/26/2/025008

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

![](_page_26_Figure_14.jpeg)

TBTMEN dose saturation at 0.6Å/cyc

![](_page_26_Figure_16.jpeg)

![](_page_26_Figure_17.jpeg)

![](_page_26_Picture_18.jpeg)

| Pt                     | Pt                                                                                                                                                                                           |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Precursor - properties | MeCp-Pt-Me3 – liquid vapour draw @ 70°C                                                                                                                                                      |  |  |  |
| Non-metal precursors   | $O_2$ (thermal and plasma)                                                                                                                                                                   |  |  |  |
| Temperature range      | 30°C* - 300°C (plasma), 225°C - 300°C (thermal)<br>*below 200°C by adding H <sub>2</sub> gas step in cycle,<br>below 100°C by H <sub>2</sub> plasma step in cycle<br>(80°C - 300°C for OpAL) |  |  |  |
| Growth rate per cycle  | 0.45 Å/cycle @ 300°C                                                                                                                                                                         |  |  |  |
| Deposition rate        | 0.18nm/min @ 300°C                                                                                                                                                                           |  |  |  |
| Resistivity            | < 20 μΩcm @ 300°C (for 20nm)                                                                                                                                                                 |  |  |  |
| Uniformity             | ± 1.5% over 100, ± 2.5% over 150mm, ± 3.5% over 200mm                                                                                                                                        |  |  |  |

### 200mm data for FlexAL only

Thermal Pt nucleation difficult at temperatures below 300 °C, at these temperatures plasma ALD which nucleates easily can be used to grow a seed layer for subsequent thermal process. At lower temperatures, PtO<sub>2</sub> formation becomes the energetically favourable process. H<sub>2</sub> gas/plasma can reduce PtO<sub>2</sub> and lowers achievable temperature range of Pt deposition down to room temperature.

![](_page_27_Figure_5.jpeg)

![](_page_27_Figure_6.jpeg)

![](_page_27_Picture_7.jpeg)

The Business of Science<sup>®</sup>

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

### **Reported in papers using Oxford Instruments tools**

Thermal ALD using MeCpPtMe<sub>3</sub> and O<sub>2</sub> gas in FlexAL at NIST Center for Nanoscale Science and Technology.

Kaplan et al., *ACS Photonics* **1**, 554 (2014) <u>http://dx.doi.org/10.1021/ph500018b</u>

Vaish et al., *J. Vac. Sci. Technol. A* **33**, 01A148 (2015) <u>http://dx.doi.org/10.1116/1.4904398</u>

![](_page_28_Picture_6.jpeg)

![](_page_28_Picture_7.jpeg)

Conformal coating of 20 nm Pt in 75 nm by 2.5 mm trench (AR 33 to 71 after coating)

![](_page_28_Picture_9.jpeg)

The Business of Science<sup>®</sup>

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

![](_page_29_Figure_2.jpeg)

Ru

Recommended precursor: Ru(EtCp)<sub>2</sub>

Best results are expected either by using an ABC process doing an  $O_2$  plasma dose followed by a dose of  $H_2$  plasma or gas in the cycle, or by following the approach from KAUST below, where a small continuous diluted flow of  $O_2$  is present.

### **Reported in papers using Oxford Instruments tools**

Plasma ALD using CpRu(CO)<sub>2</sub>Et and O<sub>2</sub> plasma in FlexAL at Eindhoven University of Technology (TU/e).

Leick et al., *J. Vac. Sci. Technol. A* **29**, 021016 (2011) <u>http://dx.doi.org/10.1116/1.3554691</u> Leick et al., *Chem. Mater.* **24**, 3696 (2012) <u>http://dx.doi.org/10.1021/cm301115s</u>

TU/e Technische Universiteit Eindhoven University of Technology

### RuO<sub>2</sub>

Plasma ALD using  $Ru(EtCp)_2$  and  $O_2$  plasma in FlexAL at King Abdullah University of Science and Technology (KAUST)

Xia et al., Adv. Energy Mater. 5, 1401805 (2015) http://dx.doi.org/10.1002/aenm.201401805

![](_page_29_Picture_13.jpeg)

The temperature of precursor was maintained at 75 °C. Substrate table at 180 °C. An optimization of an early reported modified ALD process was adopted in which a continuous Ar gas diluted oxygen exposure was maintained through all the steps of a standard ALD deposition cycle.

![](_page_29_Picture_15.jpeg)

@ Oxford Instruments Plasma Technology Ltd. All rights reserved.

Si

### SiO<sub>2</sub>

| Precursor - properties | BTBAS, BDEAS or 3DMAS                                 |
|------------------------|-------------------------------------------------------|
| Non-metal precursors   | O <sub>2</sub> plasma                                 |
| Temperature range      | 30°C - 400°C (50°C - 400°C for OpAL)                  |
| Growth rate per cycle  | ~1.4 Å/cycle @ 300°C                                  |
| Deposition rate        | 1.2nm/min @ 300°C                                     |
| Refractive Index       | 1.42 - 1.46                                           |
| Uniformity             | ± 1.5% over 100, ± 2.5% over 150mm, ± 3.5% over 200mm |
| Precursor consumption  | 15nm/g                                                |

**High-rate process**: A higher rate process has been developed (requiring a pressure gauge range up to 1 Torr instead of the standard 250 mTorr) where the speed has increased but most important while maintaining good electrical properties and good uniformity. The process works with Bis(tert-butylimino)silane (BTBAS) and O<sub>2</sub> plasma and yields deposition rate of 1.3 nm/min, see also the table below. Also the conformality is still good (conformal coating of high aspect ratio (15:1) structure) with SiO<sub>2</sub> deposited using the high rate process, see image below.

| High Rate SiO <sub>2</sub> PEALD Process |                                                 |  |  |  |
|------------------------------------------|-------------------------------------------------|--|--|--|
| V <sub>BD</sub>                          | >10 MV/cm<br>at 200°C dep. temp.                |  |  |  |
| Cycle time (PEALD)                       | 1.3 nm/min                                      |  |  |  |
| Thickness uniformity<br>(200mm, 3 mm EE) | < <u>±</u> 2.6%                                 |  |  |  |
| Thickness Repeatability                  | < <u>+</u> 1.6%                                 |  |  |  |
| Conformality                             | > 90% >30:1 AR substrate<br>at 300°C dep. temp. |  |  |  |

![](_page_30_Picture_7.jpeg)

![](_page_30_Picture_8.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

#### **Reported in papers using Oxford Instruments tools**

SiO<sub>2</sub> grown by plasma ALD using BDEAS and O<sub>2</sub> plasma at Eindhoven University of Technology.

In OpAL:

Dingemans et al., J. Electrochem. Soc. 159, H277 (2012) http://dx.doi.org/10.1149/2.067203jes In FlexAL: Potts et al., Chem. Vap. Deposition, 19, 125 (2013) http://dx.doi.org/10.1002/cvde.201207033

![](_page_31_Picture_6.jpeg)

| Substrate<br>temperature<br>(°C) | Si atoms<br>per cycle<br>(10 <sup>14</sup> cm <sup>-2</sup> ) | [H]<br>(at.%) | O/Si<br>Ratio | Mass<br>density<br>(g/cm³) |
|----------------------------------|---------------------------------------------------------------|---------------|---------------|----------------------------|
| RT*                              | 2.8                                                           | 8             | 2.0           | 1.9                        |
| 100                              | 2.8                                                           | 10            | 2.1           | 2.0                        |
| 200                              | 2.3                                                           | 7             | 2.1           | 2.0                        |
| 300                              | 1.9                                                           | 8             | 2.1           | 2.1                        |

\* Oxford FlexAL and longer plasma instead of OpAL reactor

Similar properties down to room temperature.

Carbon below detection limit (<5 at.%).

![](_page_31_Figure_11.jpeg)

Fast saturation of refractive index and growth per cycle for both precursor and plasma at 250 °C (OpAL).

![](_page_31_Picture_13.jpeg)

The Business of Science®

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

![](_page_32_Figure_2.jpeg)

*Very high conformality with short cycle time* (90 ms prec. and 4.5 s plasma)

![](_page_32_Figure_4.jpeg)

Even fast saturation and short purging at room temperature on FlexAL using  $O_2$  plasma. At these low temperatures ozone is not reactive enough to provide growth.

### **Other relevant papers:**

Usui et al., Acta Materialia **61**, 7660 (2013) http://dx.doi.org/10.1016/j.actamat.2013.09.003

Ratzsch et al., *Optics Express* **23**, 17955 (2015) <u>http://dx.doi.org/10.1364/OE.23.017955</u>

![](_page_32_Picture_9.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

Si

Si<sub>3</sub>N<sub>4</sub>

| Precursor - properties | BTBAS, BDEAS, or 3DMAS                                |
|------------------------|-------------------------------------------------------|
| Non-metal precursors   | N <sub>2</sub> plasma                                 |
| Temperature range      | 100°C - 400°C                                         |
| Growth rate per cycle  | 0.16 Å/cycle @ 400°C                                  |
| Deposition rate        | 0.05 nm/min @ 400°C                                   |
| Refractive Index       | >1.80 @ 100°C<br>>1.90 @ 200°C<br>>1.95 @ 400°C       |
| Uniformity             | ± 1.5% over 100, ± 2.5% over 150mm, ± 3.5% over 200mm |
| Precursor consumption  | 15 nm/g                                               |

The literature data has shown  $Si_3N_4$  to be a notoriously difficult ALD process due to the ease of forming Si-O bonds. Oxford Instruments has developed a SiN process with very low oxygen impurities for a SiN film deposited using ALD – this is reflected in the refractive index measurement which is very sensitive to oxygen contamination (lower refractive index means more oxygen contamination in the film).

Special note: the preferential reaction of silicon precursors is always with residual oxygen containing species such as OH groups from background moisture in the system. Consequently this process requires a load lock or nitrogen purged glove box option on the OpAL reactor.

### **Reported in papers using Oxford Instruments tools**

Si<sub>3</sub>N<sub>4</sub> grown by plasma ALD using BTBAS and N<sub>2</sub> plasma in FlexAL at Eindhoven University of Technology.

Knoops et al., *Appl. Phys. Lett.* **107**, 014102 (2015) <u>http://dx.doi.org/10.1063/1.4926366</u> Knoops et al., *ACS Appl. Mater. Interfaces* (2015) <u>http://dx.doi.org/10.1021/acsami.5b06833</u>

Ue Technische Universiteit Eindhoven University of Technology

The growth per cycle (GPC), refractive index at 2 eV, and composition of  $SiN_x$  films of ~40 nm thickness deposited at various substrate table temperatures and plasma conditions. Typical error margins are indicated for the first value in each column. A dash indicates "not measured". A change in used parameters compared to the first line is indicated in bold.

| Table | Plasma    | Plasma | GPC         | Refractive  | NI/Ci     | XPS         |             | ERD         |
|-------|-----------|--------|-------------|-------------|-----------|-------------|-------------|-------------|
| (°C)  | (mTorr)   | (s)    | (Å)         | index       | ratio     | اب]<br>ع+ % | [U]<br>at % | [⊓]<br>>t % |
| ( C)  | (IIITOIT) | (5)    |             |             | Tatio     | al. /0      | al. /0      | al. /0      |
| 200   | 40        | 10     | 0.32 ± 0.02 | 1.83 ± 0.03 | 1.7 ± 0.1 | 9 ± 1       | 5 ± 1       | 10.9 ± 0.5  |
| 200   | 40        | 15     | 0.28        | 1.86        | 1.7       | 8           | 5           | 9.6         |
| 200   | 13        | 10     | 0.24        | 1.91        | 1.6       | 6           | 5           | -           |
| 400   | 40        | 10     | 0.16        | 1.96        | 1.5       | 2           | 4           | 5.4         |

Best material properties at higher temperatures, lower plasma pressures and longer plasma times.

![](_page_33_Picture_14.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

Oxford Instruments Plasma Technology Applications Group

Better material can be achieved by using conditions with short residence time (high gas flows and low pressures). Gas residence time **r** is the time that species reside in the reactor.

Shorter residence times (figure on the right):

- ightarrow lower O and C levels
- $\rightarrow$  lower wet-etch rates

![](_page_34_Figure_6.jpeg)

Plasma ALD of SiN<sub>x</sub> using TSA and N<sub>2</sub> plasma and 3DMAS and N<sub>2</sub> plasma at 250 °C and also studies of post-deposition anneals in H<sub>2</sub> plasma.

Provine et al., *AIP Advances* **6**, 065012 (2016) <u>http://dx.doi.org/10.1063/1.4954238</u>

![](_page_34_Picture_9.jpeg)

![](_page_34_Picture_10.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

Sn

### SnO<sub>2</sub>

| Precursor - properties | TDMASn - liquid vapour draw @ 60°C                    |
|------------------------|-------------------------------------------------------|
| Non-metal precursors   | $H_2O$ thermal, $O_2$ plasma                          |
| Temperature range      | 120°C - 200°C                                         |
| Growth rate per cycle  | 1.0 Å/cycle @ 120°C                                   |
| Deposition rate        | 0.29nm/min @ 120°C                                    |
| Refractive Index       | >1.80 @ 120 °C for 10 nm thick film                   |
| Uniformity             | ± 1.5% over 100, ± 2.5% over 150mm, ± 3.5% over 200mm |

Tin oxide  $(SnO_2)$  ALD has been developed at 120 °C on the OpAL system and an optimized recipe was established.  $SnO_2$  can be off interest as a transparent conductive oxide for optoelectronic applications (e.g., solar cells) or as dopant in such layers.

![](_page_35_Figure_6.jpeg)

Fast saturation of precursor dose and good uniformity achieved.

![](_page_35_Figure_8.jpeg)

Fast saturation of water dose and good uniformity achieved.

![](_page_35_Picture_10.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

Strontium titanate is an ultra-high-k dielectric (k=80 – 100). Ru is commonly used as a compatible electrode.

### **Reported in papers using Oxford Instruments tools**

STO grown by plasma ALD using StarTi, HyperSr and  $O_2$  plasma in FlexAL at Eindhoven University of Technology.

Longo et al., *ECS J. Solid State Sci. Technol.* **2**, N15 (2013) <u>http://dx.doi.org/10.1149/2.024301jss</u> Longo et al., *ECS J. Solid State Sci. Technol.* **2**, N120 (2013) <u>http://dx.doi.org/10.1149/2.016305jss</u> Aslam et al., *Phys. Status Solidi A* **211**, 389 (2014) <u>http://dx.doi.org/10.1002/pssa.201330101</u> Aslam et al., *J. Appl. Phys.* **116**, 064503 (2014) <u>http://dx.doi.org/10.1063/1.4891831</u>

TU/e Technische Universiteit Eindhoven University of Technology

- STO composition tuned by [SrO]/[TiO<sub>2</sub>] ALD cycle ratio.
- Stoichiometry determined by Spectroscopic Ellipsometry.
- Pt/STO/Pt capacitors for high-k demonstrated (CET ~ 0.7 nm) by FZ Juelich.

![](_page_36_Figure_11.jpeg)

In situ ellipsometry can be used to monitor the change in optical properties

![](_page_36_Picture_13.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

| 100      |
|----------|
| <b>P</b> |
| 1.51     |

### Ta<sub>2</sub>O<sub>5</sub>

| Precursor - properties | TBTDMT - <i>t-butylimido tris(dimethylamido)tantalum</i> - liquid bubbled @ 50°C |
|------------------------|----------------------------------------------------------------------------------|
| Non-metal precursors   | $O_2$ plasma or $H_2O$ thermal                                                   |
| Temperature range      | 100°C - 300°C                                                                    |
| Growth rate per cycle  | 1 Å/cycle @ 300°C                                                                |
| Deposition rate        | 0.6nm/min @ 300°C                                                                |
| Refractive Index       | 1.95 - 2.15                                                                      |
| Uniformity             | ± 1.5% over 100, ± 2.5% over 150mm, ± 3.5% over 200mm                            |

### 200mm data for FlexAL only

### **Results:**

Low impurities < 2%@ 300°C

![](_page_37_Figure_8.jpeg)

AES analysis of Ta<sub>2</sub>O<sub>5</sub> film with impurities below detection limit

### **Reported in papers using Oxford Instruments tools**

Plasma ALD using TBTDMT and O<sub>2</sub> plasma at 300 °C in FlexAL at OIPT. Fang et al., Physics Procedia 32, 379 (2012) http://dx.doi.org/10.1016/j.phpro.2012.03.572

Plasma ALD using PDMAT and O<sub>2</sub> plasma at 25–250 °C in FlexAL at Eindhoven University of Technology. Potts et al., J. Electrochem. Soc. 157, P66 (2010) http://dx.doi.org/10.1149/1.3428705

![](_page_37_Picture_13.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

| 10 March 10 |
|-------------|
| 1.0         |
| - III - I   |
|             |
|             |

### TaN

| Precursor - properties | TBTDMT - <i>t-butylimido tris(dimethylamido)tantalum</i> - liquid bubbled @ 60°C                                   |
|------------------------|--------------------------------------------------------------------------------------------------------------------|
| Non-metal precursors   | $H_2$ plasma, $N_2/H_2$ plasma or $NH_3$ plasma                                                                    |
| Temperature range      | 250 - 350°C                                                                                                        |
| Growth rate per cycle  | 0.42 Å/cycle @ 350°C                                                                                               |
| Deposition rate        | 0.25nm/min @ 350°C for insulating phase                                                                            |
| Resistivity            | < 1000 $\mu\Omega$ cm @ 350°C (for long and low pressure plasma) < 300 $\mu\Omega$ cm (with a RF biased electrode) |
| Uniformity             | ± 1.5% over 100, ± 2.5% over 150mm, ± 3.5% over 200mm                                                              |

### 200mm data for FlexAL only

### Pure $H_2$ plasma gives TaN conductive phase, all others give $Ta_3N_5$ insulating phase.

![](_page_38_Figure_7.jpeg)

AES analysis of TaN deposited using H, plasma

![](_page_38_Figure_9.jpeg)

![](_page_38_Figure_10.jpeg)

![](_page_38_Figure_11.jpeg)

GPC and RI against H<sub>2</sub> plasma time

![](_page_38_Picture_13.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

#### **Reported in papers using Oxford Instruments tools**

Precursor adsorption study using PDMAT in FlexAL at Cornell NanoScale Facility.

Hughes et al., J. Phys. Chem. C **116**, 21948 (2012) http://dx.doi.org/10.1021/jp3086232

Thermal ALD using PDMAT and ammonia or monomethylhydrazine in OpAL at University of Liverpool.

Fang et al., Journal of Crystal Growth **331**, 33 (2011) http://dx.doi.org/10.1016/j.jcrysgro.2011.07.012

![](_page_39_Picture_7.jpeg)

The Business of Science\*

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

Oxford Instruments Plasma Technology Applications Group

Ti

TiO<sub>2</sub>

| Precursor - properties | TTIP or TDMAT                                         |
|------------------------|-------------------------------------------------------|
| Non-metal precursors   | $H_2O$ thermal, $O_2$ plasma                          |
| Temperature range      | 30°C - 300°C (80°C - 300°C for OpAL)                  |
| Growth rate per cycle  | ~0.55 Å/cycle @ 200°C                                 |
| Deposition rate        | 0.35nm/min @ 200°C                                    |
| Refractive Index       | 2.2 – 2.4                                             |
| Uniformity             | ± 1.5% over 100, ± 2.0% over 150mm, ± 3.0% over 200mm |

#### **Saturation curves:**

![](_page_40_Figure_6.jpeg)

linear growth regime down to room temperature

![](_page_40_Figure_8.jpeg)

XRD analysis showing TiO<sub>2</sub> is amorphous @ 200°C and anatase @ 300°C.

![](_page_40_Picture_10.jpeg)

The Business of Science®

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

••

### **Reported in papers using Oxford Instruments tools**

Plasma ALD using TTIP, Ti(Cp<sup>Me</sup>)O<sup>/</sup>Pr<sub>3</sub>, TiCp<sup>\*</sup>(OMe)<sub>3</sub> and O<sub>2</sub> plasma at 25–400 °C in FlexAL at Eindhoven University of Technology.

Potts et al., *J. Electrochem. Soc.* **157**, P66 (2010) <u>http://dx.doi.org/10.1149/1.3428705</u> Potts et al., *Chem. Vap. Deposition*, **19**, 125 (2013) <u>http://dx.doi.org/10.1002/cvde.201207033</u>

![](_page_41_Figure_5.jpeg)

Fast saturation of plasma process in FlexAL even at room temperature.

Thermal ALD using TDMAT and  $H_2O$  at 200 °C on gold nanorods in FlexAL at UC Santa Barbara. As a pretreatment, prior to ALD deposition, the gold nanorods were subjected to an  $O_2$  plasma treatment for 2 min at 100 W.

Mubeen et al. *ACS Nano*, **8**, 6066 (2014) <u>http://dx.doi.org/10.1021/nn501379r</u>

![](_page_41_Picture_9.jpeg)

Plasma and thermal ALD using TTIP and  $O_2$  plasma or  $H_2O$  in OpAL in Jena.

Ratzsch et al., *Nanotechnology* **26**, 024003 (2015) <u>http://dx.doi.org/10.1088/0957-</u> <u>4484/26/2/024003</u>

![](_page_41_Picture_12.jpeg)

Friedrich-Schiller-Universität

![](_page_41_Figure_14.jpeg)

Control of crystallinity at 100 °C by changing ion energy via the plasma pressure. TiO<sub>2</sub> films grown at ~40 mTorr (a) and ~140 mTorr (b) plasma pressures at 300W.

![](_page_41_Picture_16.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

**Saturation curves:** 

### TiN

Recommended precursor  $TiCl_4$  for lowest resistivity or TDMAT for low resistivity and best compatibility with metal-organic precursors.

| Precursor - properties | TiCl <sub>4</sub> – liquid vapour draw @ 30°C                                                                                     |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Non-metal precursors   | $N_2/H_2$ plasma, $NH_3$ thermal                                                                                                  |
| Temperature range      | 100 - 350°C (plasma) – 550°C (thermal)                                                                                            |
| Growth rate per cycle  | 0.35 Å/cycle @ 350°C                                                                                                              |
| Deposition rate        | 0.13nm/min @ 350°C                                                                                                                |
| Resistivity            | < 150 $\mu\Omega cm$ @ 350 °C (for long and low pressure plasma) < 100 $\mu\Omega cm$ @ 550 °C (for long and low pressure plasma) |
| Uniformity             | ± 1.5% over 100, ± 2.5% over 150mm, ± 3.5% over 200mm                                                                             |

## 200mm data for FlexAL only

![](_page_42_Figure_7.jpeg)

*TiCl<sub>4</sub> saturation curve.* 

Resistivity Uniformity (200mm wafer)

![](_page_42_Figure_10.jpeg)

*Excellent resistivity uniformity of* ±1.8% *over a 200mm wafer* (<±4% specification).

![](_page_42_Figure_12.jpeg)

*N<sub>2</sub>/H<sub>2</sub> plasma exposure saturation curve for 350°C deposition temperature.* 

![](_page_42_Figure_14.jpeg)

*RBS measurement of chlorine contamination as a function of plasma exposure time plotted on the same graph as resistivity. Deposition temperature was 350°C.* 

![](_page_42_Picture_16.jpeg)

The Business of Science®

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

The main impurity in TiN films deposited by TiCl<sub>4</sub> is chlorine. By increasing the plasma exposure time the H<sub>2</sub> plasma more effectively removes the chlorine impurities as HCl. This reduction in chlorine impurities results in a corresponding drop in resistivity. The resistivity at 350°C is approximately  $175\mu\Omega cm$ , and in order to achieve such low resistivity using thermal ALD would require a deposition temperature in excess of 550°C.

![](_page_43_Figure_3.jpeg)

![](_page_43_Figure_4.jpeg)

62 μΩcm achieved at 550 °C for 60 nm film. Higher degree of crystallinity (surface roughness of 3.3 nm).

![](_page_43_Picture_6.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

### **Non-chlorine alternative**

| Precursor - properties | TDMAT – liquid bubbled @ 60°C                                     |
|------------------------|-------------------------------------------------------------------|
| Non-metal precursors   | $N_2/H_2$ plasma, $NH_3$ thermal                                  |
| Temperature range      | 100 - 350°C                                                       |
| Growth rate per cycle  | ~0.5 Å/cycle @ 200°C                                              |
| Deposition rate        | 0.23nm/min @ 200°C                                                |
| Resistivity            | < 300 $\mu\Omega$ cm @ >200 °C (for long and low pressure plasma) |
| Uniformity             | ± 1.5% over 100, ± 2.5% over 150mm, ± 3.5% over 200mm             |

### 200mm data for FlexAL only

Note that even though 350 °C is reportedly above the decomposition temperature of TDMAT, the process results in uniform high-quality films. For thick film (74 nm) also low resistivity of 184  $\mu\Omega$ cm obtained at 200 °C.

![](_page_44_Figure_6.jpeg)

Plasma properties for low resistivity TiN are optimal at 100 W plasma power. Even though the ion flux would be lower at this power, the ion energy is higher and could be essential in achieving high conductivity.

### **Reported in papers using Oxford Instruments tools**

- Plasma ALD using TiCl<sub>4</sub> and H<sub>2</sub>/N<sub>2</sub> plasma at 150–400 °C in FlexAL at Eindhoven University of Technology. Heil et al., *J. Vac. Sci. Technol. A* **25**, 1357 (2007) <u>http://dx.doi.org/10.1116/1.2753846</u> Hoogeland et al., *J. Appl. Phys.* **106**, 114107 (2009) <u>http://dx.doi.org/10.1063/1.3267299</u>
- Plasma ALD using TiCl<sub>4</sub> and H<sub>2</sub>/N<sub>2</sub> plasma at 140 °C in OpAL at Jet Propulsion Laboratory. Jang et al., *Nature Materials* **12**, 893 (2013) <u>http://dx.doi.org/10.1038/nmat3738</u>
- Plasma ALD using TDMAT and H<sub>2</sub>/N<sub>2</sub> plasma at 200-300 °C in OpAL at Massachusetts Institute of Technology. Brennan et al., *J. Appl. Phys.* **118**, 045307 (2015) <u>http://dx.doi.org/10.1063/1.4927517</u>

#### **Other relevant papers:**

Knoops et al., *J. Electrochem. Soc.* **155**, G287 (2008) <u>http://dx.doi.org/10.1149/1.2988651</u> Nelson-Fitzpatrick et al., *J. Vac. Sci. Technol. A* **31**, 021503 (2013) <u>http://dx.doi.org/10.1116/1.4790132</u> Coumou et al., IEEE Trans. Appl. Supercon. **23**, 7500404 (2013) <u>http://dx.doi.org/10.1109/TASC.2012.2236603</u>

![](_page_44_Picture_14.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

Technische Universiteit

University of Technology

**Eindhoven** 

Oxford Instruments Plasma Technology Applications Group

| Г | ٦ | 7 | V | 7 |
|---|---|---|---|---|
| A | 1 | A | 1 | 1 |

### WO<sub>3</sub>

| Precursor - properties | WNBURE ( <sup>t</sup> BuN) <sub>2</sub> W(NMe <sub>2</sub> ) <sub>2</sub> – liquid bubbled @ 50°C |
|------------------------|---------------------------------------------------------------------------------------------------|
| Non-metal precursors   | O <sub>2</sub> plasma                                                                             |
| Temperature range      | 50 °C - 350 °C                                                                                    |
| Growth rate per cycle  | 0.47 Å/cycle @ 300°C                                                                              |
| Uniformity             | ± 1.5% over 100, ± 2.5% over 150mm, ± 3.5% over 200mm                                             |

### **Reported in papers using Oxford Instruments tools**

ALD using  $({}^{t}BuN)_{2}W(NMe_{2})_{2}$  and  $O_{2}$  plasma in FlexAL at Eindhoven University of Technology.

Balasubramanyam et al., *J. Vac. Sci. Technol. A* 36, 01B103 (2018) http://dx.doi.org/10.1116/1.4986202

111p://dx.doi.org/10.1116/1.4986202

![](_page_45_Figure_9.jpeg)

Growth per cycle (GPC) as a function of precursor dosing time showing fast saturation even at low temperature.

![](_page_45_Figure_11.jpeg)

Growth per cycle (GPC) as a function of plasma exposure time showing saturation at all temperatures.

![](_page_45_Figure_13.jpeg)

TU/

e

Optical properties of WO<sub>3</sub> films showing high refractive index and low absorption.

![](_page_45_Picture_15.jpeg)

The Business of Science®

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

\_\_\_\_

![](_page_46_Figure_2.jpeg)

GPC as a function of temperature both in terms of thickness and number of W atoms per cycles both showing a wide temperature window.

*GI-XRD diffractogram. For the WO<sub>3</sub> film deposited at 400 °C, shows the respective peaks for monoclinic WO<sub>3</sub>.* 

| Deposition<br>temperature<br>(°C) | e GPC<br>(Å)    | W (at nm <sup>-2</sup> cycle <sup>-1</sup> ) | O/W       | [H]<br>(at. %) | Mass density<br>(g cm <sup>-3</sup> ) |
|-----------------------------------|-----------------|----------------------------------------------|-----------|----------------|---------------------------------------|
| 100                               | $0.68 \pm 0.03$ | $1.06 \pm 0.08$                              | 2.9 ± 0.1 | $11.3 \pm 0.8$ | $5.8 \pm 0.1$                         |
| 200                               | 0.53            | 0.85                                         | 2.9       | 2.5            | 5.9                                   |
| 300                               | 0.44            | 0.62                                         | 2.9       | 2.5            | 5.9                                   |
| 350                               | 0.43            |                                              |           |                |                                       |
| 400                               | 0.43            | 0.62                                         | 2.9       | 6.2            | 5.9                                   |

A composition close to WO<sub>3</sub> and a high mass density are obtained over the entire temperature range.

Refractive index and band gap information over entire temperature window.

| Deposition temperature (°C) | Refractive index (n) | Band gap (eV)   |
|-----------------------------|----------------------|-----------------|
| 100                         | $2.10 \pm 0.03$      | $3.23 \pm 0.04$ |
| 200                         | 2.22                 | 3.17            |
| 300                         | 2.27                 | 3.15            |
| 350                         | 2.27                 | 3.13            |
| 400                         | 2.28                 | 3.12            |

![](_page_46_Picture_9.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

W

## WN<sub>x</sub>

### WN<sub>x</sub> based on customer results

![](_page_47_Figure_5.jpeg)

![](_page_47_Figure_6.jpeg)

GPC against plasma time for WN for 1 second WNBURE dose time

Similar to  $TaN_x$  process, the lowest resistivity is expected when using a pure H<sub>2</sub> plasma at low plasma pressure. The usage of biasing should allow further improvement of the conductivity.

![](_page_47_Picture_9.jpeg)

The Business of Science®

 $\ensuremath{\textcircled{\sc o}}$  Oxford Instruments Plasma Technology Ltd. All rights reserved.

|  | _ |  |
|--|---|--|

### **ZnO**

| Precursor - properties | DEZ - liquid vapour draw @ 30°C                       |
|------------------------|-------------------------------------------------------|
| Non-metal precursors   | $H_2O$ thermal, $O_2$ plasma, $O_2$ and $H_2$ plasma  |
| Temperature range      | 30°C - 200°C (50°C - 200°C for OpAL)                  |
| Growth rate per cycle  | 1.85 Å/cycle @ 200°C (thermal)                        |
| Deposition rate        | 2.2nm/min @ 200°C                                     |
| Refractive Index       | 1.95 @ 200°C                                          |
| Uniformity             | ± 1.5% over 100, ± 2.5% over 150mm, ± 3.5% over 200mm |
| Precursor consumption  | 100nm/g                                               |

### 200mm data for FlexAL only

For conductive ZnO films typically thermal ALD is best used to not fully oxidize the films. Doping using Al or B can be used to increase the carrier density. Using O<sub>2</sub> plasma, semiconducting films can be grown which can be good for transistor applications. Due to the low reactivity of H<sub>2</sub>O at low temperatures (e.g.  $\leq$ 100 °C) a recipe with O<sub>2</sub> plasma with occasional H<sub>2</sub> plasma exposures can be used to deposit conductive films.

### **Results:**

- Transparent conductive oxide (TCO)
- Resistivity ~9.0 x10<sup>-4</sup> ohm cm (Al doped) to  $5x10^{-3}$  ohm cm

![](_page_48_Figure_10.jpeg)

AES of ZnO deposited by thermal ALD

![](_page_48_Figure_12.jpeg)

![](_page_48_Figure_13.jpeg)

![](_page_48_Picture_14.jpeg)

The Business of Science®

 $\ensuremath{\textcircled{\sc o}}$  Oxford Instruments Plasma Technology Ltd. All rights reserved.

---

Oxford Instruments Plasma Technology Applications Group

![](_page_49_Figure_2.jpeg)

![](_page_49_Figure_3.jpeg)

Film resistivity for thermal ALD using  $H_2O$  (TH-ALD), plasma ALD using  $O_2$  plasma (PE-ALD), and plasma ALD using  $O_2$  plasma and interleaved  $H_2$  plasma exposures (INTR PE-ALD). Due to the low reactivity of  $H_2O$  at low temperatures a plasma process is needed at 100 °C to obtain a low resistivity.

![](_page_49_Picture_5.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

#### **Reported in papers using Oxford Instruments tools**

Thermal ALD using DEZ and  $H_2O$  in OpAL at Eindhoven University of Technology.

Al-doped ZnO using TMA and DMAI: Wu et al., *J. Appl. Phys.* **114**, 024308 (2013) <u>http://dx.doi.org/10.1063/1.4813136</u> Wu et al., *Chem. Mater.* **25**, 4619 (2013) <u>http://dx.doi.org/10.1021/cm402974j</u> B-doped ZnO using TIB: Garcia-Alonso et al., *J. Mater. Chem.* C **3**, 3095 (2015) <u>http://dx.doi.org/10.1039/C4TC02707H</u> Plasma treatments before and after ZnO grown at 120 °C for CIGS solar cells. Williams et al., *Sol. Ener. Mat. & Sol. Cells*  **157**, 798 (2016) <u>http://dx.doi.org/10.1016/j.solmat.2016.07.049</u>

Plasma ALD using DEZ and  $O_2$  plasma in FlexAL at University of Southampton.

Sultan et al., *IEEE Elec. Dev. Lett.* **33**, 203 (2012) <u>http://dx.doi.org/10.1109/LED.2011.2174607</u> Ditshego et al., *Microelectronic Engineering* **145**, 91 (2015) <u>http://dx.doi.org/10.1016/j.mee.2015.03.013</u> ZnO nanowire sensors by ALD and ion beam etching for healthcare applications: Sun et al., *Microelectronic Engineering* **153**, 96 (2016) http://dx.doi.org/10.1016/j.mee.2016.02.016

Thermal ALD using DEZ and  $H_2O$  in OpAL at University of Freiburg for ALD treated storage layer in drug release device.

> Boehler et al., *Scientific Reports* **6**, 19574 (2016) <u>http://dx.doi.org/10.1038/srep19574</u>

### **Other relevant papers:**

Demaurex et al., *IEEE J. Photovoltaics* **4**, 1387 (2014) http://dx.doi.org/10.1109/JPHOTOV.2014.2344771 Macco et al., *Semicond. Sci. Technol.* **29**, 122001 (2014) http://dx.doi.org/10.1088/0268-1242/29/12/122001 Pollock et al., *J. Vac. Sci. Technol. A* **32**, 041516 (2014) http://dx.doi.org/10.1116/1.4885063

![](_page_50_Figure_11.jpeg)

![](_page_50_Figure_12.jpeg)

![](_page_50_Figure_13.jpeg)

At 150 °C lower  $\rho$ , for ZnO:B. Also for low temperature better doping with larger ligand precursor (DMAI vs TMA). B better dopant (less easily oxidized) at low temperature.

![](_page_50_Picture_15.jpeg)

The Business of Science<sup>®</sup>

© Oxford Instruments Plasma Technology Ltd. All rights reserved.

---

Zr

## ZrO<sub>2</sub>

| Precursor - properties | ZrCMMM (MeCp) <sub>2</sub> Zr(OMe)(Me) – liquid bubbled @ 70°C |
|------------------------|----------------------------------------------------------------|
| Non-metal precursors   | $O_2$ plasma or $H_2O$ thermal                                 |
| Temperature range      | 300°C1                                                         |
| Growth rate per cycle  | ~0.5 Å/cycle @ 300°C                                           |
| Uniformity             | ± 2.0% over 100, ± 3.0% over 150mm, ± 3.5% over 200mm          |

### Notes

<sup>1</sup> It is anticipated that this can be extended to lower temperatures

### **Reported in papers using Oxford Instruments tools**

Thermal ALD using TEMAZr and  $\rm H_2O$  in FlexAL at UC Santa Barbara.

Chobpattana et al., *J. Appl. Phys* **116**, 124104 (2014) <u>http://dx.doi.org/10.1063/1.4896494</u> Chobpattana et al., *Appl. Phys. Lett.* **104**, 182912 (2014) <u>http://dx.doi.org/10.1063/1.4875977</u>

![](_page_51_Picture_10.jpeg)

![](_page_51_Picture_11.jpeg)

ALD ZrO<sub>2</sub> part of high-quality gate stack on InGaAs

![](_page_51_Picture_13.jpeg)

© Oxford Instruments Plasma Technology Ltd. All rights reserved.